Rational Embeddings of Convex Polyhedra

Zack Chroman and Mentor Sheela Devadas

Sixth Annual MIT PRIMES Conference, May 21st, 2016

Introduction

Question

Do all convex polyhedra have embeddings into \mathbb{R}^{3} with all rational edge lengths?

Previous Results and Conjectures

Theorem (Steinitz)
A graph is the edge graph of a polyhedron iff it is a planar and 3-connected graph.

Previous Results and Conjectures

Theorem (Steinitz)
A graph is the edge graph of a polyhedron iff it is a planar and 3-connected graph.

- Rational coordinates

Previous Results and Conjectures

Theorem (Steinitz)
A graph is the edge graph of a polyhedron iff it is a planar and 3-connected graph.

- Rational coordinates
- "Canonical embedding"

Previous Results and Conjectures

Theorem (Steinitz)
A graph is the edge graph of a polyhedron iff it is a planar and 3-connected graph.

- Rational coordinates
- "Canonical embedding"

Theorem (Sun)

All simplicial polyhedra have embeddings with all side lengths rational.

Previous Results and Conjectures (continued)

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

Previous Results and Conjectures (continued)

Two dimensions:
Conjecture (Harborth)
All planar graphs have embeddings with all edge lengths rational

- Unit square

Previous Results and Conjectures (continued)

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

- Unit square
- Polygon embeddings

Previous Results and Conjectures (continued)

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

- Unit square
- Polygon embeddings
- Rational distance sets

Previous Results and Conjectures (continued)

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

- Unit square
- Polygon embeddings
- Rational distance sets

Question

Does there exist a dense set of points with pairwise rational distances in \mathbb{R}^{3} ?

Question

Does there exist a dense subset of the unit sphere with pairwise rational distance?

Spherical Embeddings

- Polyhedra with all vertices on a sphere
- Non-inscribable polyhedra exist!

Figure: A Triakis tetrahedron, with no embedding on a sphere

Our approach

Question

How many simplicial polyhedra have spherical embeddings?

Our approach

Question

How many simplicial polyhedra have spherical embeddings?

- Probabilistic, inductive approach
- Edge contraction shrinks a simplicial polyhedron to a smaller one

Results

Conjecture

A randomly chosen simplicial polyhedron on n vertices is inscribable with probability at least $\left(\frac{2}{9}\right)^{n}$

Future work

- Stronger bounds
- Not necessarily simplicial polyhedra
- Other problems concerning the embeddings of polyhedra

Acknowledgements

Thanks to PRIMES for providing this opportunity, Ravi Vakil for suggesting this project, and my mentor Sheela Devadas

