Rational Embeddings of Convex Polyhedra

Zack Chroman and Mentor Sheela Devadas

Sixth Annual MIT PRIMES Conference, May 21st, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Do all convex polyhedra have embeddings into \mathbb{R}^3 with all rational edge lengths?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Steinitz)

A graph is the edge graph of a polyhedron iff it is a planar and 3-connected graph.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Steinitz)

A graph is the edge graph of a polyhedron iff it is a planar and 3-connected graph.

• Rational coordinates

Theorem (Steinitz)

A graph is the edge graph of a polyhedron iff it is a planar and 3-connected graph.

- Rational coordinates
- "Canonical embedding"

Theorem (Steinitz)

A graph is the edge graph of a polyhedron iff it is a planar and 3-connected graph.

- Rational coordinates
- "Canonical embedding"

Theorem (Sun)

All simplicial polyhedra have embeddings with all side lengths rational.

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

• Unit square

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

- Unit square
- Polygon embeddings

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

- Unit square
- Polygon embeddings
- Rational distance sets

Two dimensions:

Conjecture (Harborth)

All planar graphs have embeddings with all edge lengths rational

- Unit square
- Polygon embeddings
- Rational distance sets

Question

Does there exist a dense set of points with pairwise rational distances in $\mathbb{R}^3?$

Question

Does there exist a dense subset of the unit sphere with pairwise rational distance?

Spherical Embeddings

- Polyhedra with all vertices on a sphere
- Non-inscribable polyhedra exist!

Figure: A Triakis tetrahedron, with no embedding on a sphere

Our approach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question

How many simplicial polyhedra have spherical embeddings?

Question

How many simplicial polyhedra have spherical embeddings?

- Probabilistic, inductive approach
- Edge contraction shrinks a simplicial polyhedron to a smaller one

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conjecture

A randomly chosen simplicial polyhedron on n vertices is inscribable with probability at least $(\frac{2}{9})^n$

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Stronger bounds
- Not necessarily simplicial polyhedra
- Other problems concerning the embeddings of polyhedra

Acknowledgements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thanks to PRIMES for providing this opportunity, Ravi Vakil for suggesting this project, and my mentor Sheela Devadas